

Soil Vapor Extraction (SVE)

General Principles and Site Applications

Former Marine Corps Air Station El Toro

Karnig Ohannessian and Marc P. Smits Navy Remedial Project Managers

25 May 2005 RAB Meeting

SVE Life Cycle

Pilot Test

- Install pilot wells (screen, spacing, layout, soil sampling)
- Conduct "Step Test" to obtain vacuum-flow response data
- Conduct "Constant Rate Tests" to measure flows and induced pressure gradients at various applied vacuums
- Collect soil vapor samples for laboratory analysis

Design

- Use pressure response measurements to estimate vacuum radius of influence
- Use flow, porosity, moisture content, bulk density, temperature, vacuum radius of influence, etc. to estimate soil permeability and effective radius of influence (based on critical flow velocity)
- Determine number and layout of extraction and monitoring wells
- Use Step Test data to size blower, flow data to size pipes, soil vapor data to select air pollution control technology
- Construction and Startup
- Operation and Maintenance (O&M) and Shutdown
 - Field logs; utilities; well balancing; asymptote; rebound; cost

Remedial Progress Monitoring

Previous SVE Use at MCAS El Toro

- SVE tests have been conducted previously at two UST sites to evaluate the removal gasoline contamination from the soil.
- SVE test were also conducted at three UST sites to evaluate the removal of heating oil contamination from the soil.
- SVE successfully remediated VOC concentrations at Site 24 and a Proposed Plan is currently being prepared to propose that no further action is necessary for the soil.
- SVE systems generally "off-the-shelf" and can easily be modified to meet site-specific conditions.

Portable SVE System at Site 24

SVE System at Site 24

SVE System at Former UST 651 Site

SVE System at Former UST 1B Site

SVE System at Former UST 390 Site

Future SVE Tests at MCAS El Toro

- Planning to conduct two additional SVE tests in the Summer of 2005 at Site 16 and UST 273B.
- Site 16 consists of both total petroleum hydrocarbon and VOC contamination in the soil from fire-fighter training activities.
- UST 273B contains heating oil contamination to approximately 60 feet below ground surface.
- Results from the SVE tests at these two sites will assist in evaluating the use of SVE at other sites with similar contaminants and soil conditions.

Plan View – UST 273B

Cross-Section – UST-273B

What is SVE?

- SVE refers to soil vapor extraction and is one of the most widely used soil treatment technologies at CERCLA and RCRA sites.
- The U.S. Environmental Protection Agency (EPA) has identified SVE as a preferred approach (i.e., presumptive remedy) for remediation of volatile organic compounds (VOCs).
- VOCs are a group of chemical compounds composed of hydrogen and carbon that are characterized by their tendency to volatilize or partition from water or soil to air.

What is SVE?

- SVE systems are designed to remove chemicals that have a tendency to volatilize or evaporate easily by applying a vacuum through a system of underground wells.
- VOCs are pulled from the subsurface soils in vapor form and treated before discharging to the atmosphere
- Simplified diagram of SVE presented in following figure.

Simplified SVE System

Advantages and Disadvantages

Exhibit II-2 Advantages And Disadvantages Of SVE

Advantages

- Proven performance; readily available equipment; easy installation.
- Minimal disturbance to site operations.
- Short treatment times: usually 6 months to 2 years under optimal conditions.
- Cost competitive: \$20-50/ton of contaminated soil.
- Easily combined with other technologies (e.g., air sparging, bioremediation, and vacuum-enhanced dual-phase extraction).
- Can be used under buildings and other locations that cannot be excavated.

Disadvantages

- Concentration reductions greater than about 90% are difficult to achieve.
- Effectiveness less certain when applied to sites with low-permeability soil or stratified soils.
- May require costly treatment for atmospheric discharge of extracted vapors.
- > Air emission permits generally required.
- Only treats unsaturated-zone soils; other methods may also be needed to treat saturated-zone soils and groundwater.

SVE System Effectiveness

- SVE is an effective remedial option at sites impacted by solvents and other volatile compounds.
- The effectiveness of an SVE system at a given site depends on the properties of the soil and the properties and distribution of the chemicals in the subsurface.
- SVE is best suited to sites with permeable soil such as sand.

SVE System Effectiveness

Key Points for Successful SVE Implementation

- Delineation of soil contamination.
- Evaluation of soil conditions and physical properties.
- Placement of soil vapor extraction wells and monitoring points.
- Select appropriate SVE unit for soil conditions and contamination.
- Remove contaminants from vapor stream.
- Optimizing the SVE system after startup.
- Collect sufficient monitoring data to evaluate the effectiveness of SVE.